Directional Constraint Evaluation in Optimality Theory

نویسنده

  • Jason Eisner
چکیده

Weighted nite-state constraints that can count unboundedly many violations make Optimality Theory more powerful than nite-state transduction (Frank and Satta, 1998). This result is empirically and computationally awkward. We propose replacing these unbounded constraints, as well as nonnite-state Generalized Alignment constraints, with a new class of nite-state directional constraints. We give linguistic applications, results on generative power, and algorithms to compile grammars into transducers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optionality and Gradience in Persian Phonology: An Optimality Treatment

The distribution of the allophones of /?/in certain contexts involves free variation and gradient preferences. An organized survey was conducted to elicit the judgments of 37 native Persian speakers concerning the well-formedness of /?/allophonic behavior in five different phonological positions. The results showed that the differences in judgment between the various categories are not just t...

متن کامل

Optimality conditions for maximizing a function over a polyhedron

We present new first and second-order optimality conditions for maximizing a function over a polyhedron. These conditions are expressed in terms of the first and second-order directional derivatives along the edges of the polyhedron, and an edge description of the polyhedron. If the objective function is quadratic and edgeconvex, and the constraint polyhedron includes a box constraint, then loc...

متن کامل

On Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions

Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...

متن کامل

Directional Footing, Degeneracy, and Alignment

This paper argues from an Optimality Theory (OT; Prince & Smolensky 1991, 1993; McCarthy & Prince 1993a,b, 1994) perspective that no one-to-one correspondence exists between directional footing effects and individual constraints. Rather, the requirements of a single prosodic alignment constraint may result either in left-to-right or right-to-left footing, depending on its position in a constrai...

متن کامل

On Directional Metric Subregularity and Second-Order Optimality Conditions for a Class of Nonsmooth Mathematical Programs

We study infinite dimensional optimization problems where the constraint mapping is given as the sum of a smooth function and a generalized polyhedral multifunction, e.g. the normal cone mapping of a convex polyhedral set. By using advanced techniques of variational analysis we obtain first-order and second-order characterizations, both necessary and sufficient, for directional metric subregula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000